If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-200x+455=0
a = 9; b = -200; c = +455;
Δ = b2-4ac
Δ = -2002-4·9·455
Δ = 23620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23620}=\sqrt{4*5905}=\sqrt{4}*\sqrt{5905}=2\sqrt{5905}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-2\sqrt{5905}}{2*9}=\frac{200-2\sqrt{5905}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+2\sqrt{5905}}{2*9}=\frac{200+2\sqrt{5905}}{18} $
| 78x7=546 | | 78x6=468 | | 88x4=352 | | 83x4=332 | | 82x9=738 | | 81x9=729 | | 94x6=564 | | 72x9=648 | | 74x7=518 | | 99x7=693 | | 66x5=330 | | 98x4=392 | | 97x4=388 | | 89x4=356 | | 77x6=462 | | 99x6=594 | | 5(2x-3)=-20 | | 99x4=396 | | 2z+3=6+2z | | 7x+9=7+3x | | 5t-4=4t-6 | | F=12x-1 | | 8(0)+4y=10 | | 36+3y-3y^2=0 | | Y=85*7x | | b+7=36/3 | | 3/5y+1=19 | | y2-64=0 | | 4x^2+13x+8=0 | | 2x2+12=44 | | 5(6)^x=65 | | 19y=19 |